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Abstract. The purpose of this article is to show that the differential dynamic programming (DDP) algorithm 
may be readily adapted to cater for state inequality constrained continuous optimal control problems. In par- 
ticular, a new approach using a multiplier penalty function scheme incorporated with the DDP algorithm is shown 
to be effective. The DDP algorithm, implemented in conjunction with a multiplier penalty function scheme, is 
compared to an established DDP algorithm variant and the gradient-restoration method. 

1. Introduction 

The differential dynamic programming (DDP) algorithm developed by Jacobson and Mayne 
[1] does not cater directly for state variable inequality constraints (SVICs). 

DDP algorithm variants, specifically designed to accommodate the continuous optimal 
control problem subject to constraints of SVIC form, have been developed by Martensson 
[2], Jarmark [3], and Tun and Dillon [4]. Although these different DDP algorithm variants 
can give encouraging results, they all involve increased and often considerable implemen- 
tation and computational effort, particularly for highly nonlinear problems. 

The optimal control problem with constraints of SVIC form has been extensively re- 
searched [5-9]. Although a number of numerical methods based on this work have emerged, 
including the DDP variant of Tun and Dillon [4], schemes using penalty functions remain 
a popular alternative [3, 4, 9-13]. Penalty function schemes are known to have stability 
and accuracy problems, but their flexibility and ease of implementation make them worthy 
of continued interest. 

Apart from work by Jarmark [3], there appears to have been scant interest, or at least 
little reported, regarding the use of penalty function schemes with DDP applied to the SVIC 
problem. Chen and Chang et al. [14, 15] have recently reported on the effectiveness of 
incorporating a multiplier penalty function scheme, as first proposed by Bertsekas [16], 
with the DDP algorithm applied to discrete SVIC optimal control problems. 

The intent in this article is to demonstrate the ease of implementation and effectiveness 
of penalty function schemes when combined with the DDP algorithm and applied to con- 

t inuous SVIC optimal control problems. In particular, and following the lead of Chen and 
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Chang et al. [14, 15], a new DDP algorithm variant using a multiplier penalty function 
scheme is shown to compare favorably with an established DDP algorithm variant and the 
gradient-restoration algorithm. 

2. Problem statement and notation 

Solution of the continuous optimal control problem involves finding a control function u(0 
that minimizes a cost functional or performance index 

V(xo, to) = L~oL(X, u; t) dt + F(x(tf); t f)  (1) 

subject to dynamic system constraints described by a set of ordinary differential equations 

Jr = f ( x ,  u; t); X(to) = Xo, x(tf) = xt~, (2) 

where 

x(t) is an n-dimensional vector function of time that describes the state of the dynamic 
system at any time t ~ [to, tf]; 

u(t) is an m-dimensional vector function of time that describes the control available for 
adjustment at any time t ~ [t 0, ty]; 

f ( x ,  u; t) is an n-dimensional vector function that describes the dynamical structure of 
the system. The notation adopted means that f is  a function ofx(t) and u(t) explicitly and 
possibly also of time explicitly; 

L and F are scalar functions of their arguments; and 
V is a scalar that describes the value of some performance index or cost functional 

associated with the dynamical system. 

The object of the SVIC optimal control problem is to solve equation (2) for a control 
u(0; t ~ [t 0, tf], such that the cost functional given by equation (1) is minimized and the 
following SVIC is satisfied: 

g(x; t) <_ 0 v t ~  [to, tl]. (3) 

3. DDP and penalty function schemes 

A full description of the DDP algorithm can be found in Jacobson and Mayne [1]. Here 
only those sections of the algorithm that need significant alteration in order to accom- 
modate penalty function schemes are discussed. 
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The essence of the DDP method lies in the backward integration of the following matrix 
differential equations: 

-("x = Hx + Vxx(f - f ( x ,  (t; t)), 
T - 1  -("xx = H~ + fffVxx + Vxxfx - (H,,x + f~Vxx)Huu (H,,x + fTVxO. 

The Hamiltonian H is defined in the usual manner as 

H = H(x, u, Vx; t) = L(x, u; t) + < Vx, f ( x ,  u; t) > .  

In addition to requiring partial derivatives of H with respect to state and control variables, 
the DDP algorithm also requires a complete minimization of H with respect to control 
at each time step in an iteration. This minimization of H is used to calculate improved 
controls between iterations. 

It will be shown that exterior quadratic penalty function (EQPF) an multiplier penalty 
function (MPF) schemes require simple modifications to the form of the Hamiltonian and 
some minor modifications to the control of flow in the DDP algorithm. This is in marked 
contrast when compared with other DDP algorithm variants for the SVIC problem. 

4. A DDP/EQPF scheme 

The augmented integrand of the cost functional in equation (1) becomes 

L*(x, u, w; t) = L(x, u; t) + w ~ Ai~(x;  t), 
i=1 

where A i = 1 if the gi > 0 ,  A i = 0 otherwise, and n is the number of constraints g. 
This results in an augmented Hamiltonlan: 

H*(x, u, V x, w; t) = H(x, u, Vx; t) + w ~ Ai~(x;  t). 
i=1 

Repeated iteration of the DDP algorithm, using H* in place of H and using a high fixed 
value for, or successively increasing values of, the penalty weighting parameter w be- 
tween iterations, usually results in satisfaction of the constraints of SVIC form to within 
some specified tolerance. 

The only required modifications to the DDP algorithm are in the backward integration 
phase and involve simple changes to the partial derivatives of the augmented Hamiltonian 
with respect to the state variables. The incorporation of a weighting parameter updating 
scheme is a minor addition to the main flow of the algorithm. That is, 

H* = H + w ~ Aig 2, 
i=l  

Hx* = Hx + 2w ~ Aigg x 
i=1 
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and 

n 

H* = Hxx + 2w Z Ai(ggxx + g2), 
i= l  

where g = gi(x; t) is used for notational convenience. 

5. DDP and a MPF scheme--the new approach 

Essentially, the MPF method merges the penalty function idea with a primal-dual Lagrange 
multiplier scheme, producing an algorithm that largely overcomes the ill conditioning and 
rate-of-convergence difficulties associated with EQPF schemes. 

Bertsekas [16, 17], has analyzed the use of multiplier methods for general contrained 
minimization problems and concluded that they have significant advantages over traditional 
penalty function methods in terms of reliability and speed of convergence. In particular, 
he points out that convergence for the method of multipliers can usually be obtained without 
the need to increase the penalty weighting parameter to the point where ill conditioning 
becomes a problem. He notes that most researchers concur that multiplier penalty func- 
tions are the best method available for problems with nonlinear constraints in the absence 
of special structures that might otherwise be exploited. He suggests that MPF schemes 
are suitable for high-dimensional problems with multiple constraints, such as nontrivial 
constrained optimal control problems. 

The convergence rate for MPF schemes applied to general constrained optimization prob- 
lems can be shown to be linear or better for convex problems, but the same restriction 
exists as for penalty function techniques in the case of nonconvex problems: the solution 
of the primal problem may not be optimal unless the minimizaton of the dual is indeed global. 

Chen and Chang et al. [14, 15] recently used ideas suggested by Bertsekas [17] to incor- 
porate the MPF method with the DDP algorithm, giving encouraging results for discrete 
optimal control problems subject to constraints of SVIC form. Proceeding along similar 
lines, this article shows that the DDP algorithm is readily modified to incorporate the MPF 
method in order to effectively deal with continuous optimal control problems subject to 
constraints of the SVIC form. 

5.1. Dual-problem formulation 

The constrained optimal control problem specified by equations (1), (2), and (3) involves 
two sets of constraints: the system dynamics as specified by equation (2) and the explicit 
constraint on state given by equation (3). A dual problem may be constructed, relaxing 
all but the constraints on the system dynamics, by applying a MPF scheme along the lines 
proposed by Bertsekas [17] as follows. 
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Let  

aj(x, u; 0 = wgj(x, u; t), 

where w is a weighting parameter associated with a series of constriants {gj}. 
Note that x and u are functions of time with gj(x, u; t) = gj(x) if the constraint does 

not involve u or t explicitly. 
P(ct,/~; t) is introduced as a (yet to be fully defined) MPF associated with the constraints 

gj(x, u; t) as follows: 

.-% 
P(t~, I~; t) = 2.~ Pj(o~j, I~j; t), 

j = l  

where/~j(0 is a multiplier and n is the total number of constraints. 
The integrand of the cost functional given by equation (1) is then modified to accom- 

modate this MPF, thus forming an augmented cost integrand 

L*(x, u, ~, t~; t) = L(x, u; t) + 1 /wP(a ,  Iz; t). 

The dual problem corresponding to equations (1), (2), and (3) is then 

max D(~, /~; t), (4) 
u 

with 

D(t~, tx; t) = l~un f t l  f L*(x,  u, ~,  #; t) dt + F(x(tf),  tf) (5) 

subject to equation (2). 
Solution of this dual problem, and thus also of the constrained primal problem, is simply 

a matter of using a numerical method, suitable for unconstrained optimal control problems, 
to minimize equation (5). This algorithm would start with nominal values for/~(t) and w 
and then iteratively generate improved values until both equations (4) and (5) are satisfied 
to the required accuracy. In other words, equations (4) and (5) are alternated in an iteration 
sequence until convergence. 

The updated multipliers at each unconstrained problem iteration sequence are generated 
for each of the j constraints from 

# i + l ( t )  = V~P(ot, ixi; t) 

olj = wigj[x(lz i, wi; t), u(lz i, wi; t); t], 

where V~ = OPIOocy, i is an iteration index and  {W i} is a positive nondecreasing sequence. 
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5.2. Properties of  a combined DDP/MPF algorithm 

Chen and Chang et al. [14, 15] point out that an algorithm combining DDP and MPF 
methods inherits many of the desirable properties of both, namely: 

�9 Convergence of the DDP/MPF algorithm to at least a local minimum of equation (5) 
is quadratic (at least in the discrete case), provided certain smoothness and convexity 
assumptions apply; 

�9 The convergence rate for the multipliers/~(t) is at least linear, provided both the primal 
and dual problems are convex [17]; 

�9 The selection of the MPF P(0/,/z; t) can drastically affect the rate of convergence and 
the general performance of the algorithm [17]. 

5.3. Selection of  a multiplier penalty function 

The following MPF form, which is both smooth and numerically stable, was suggested 
by Bertsekas [17], and then subsequently modified and used by Chen and Chang et al. 
[14, 15] in solving discrete SVIC problems: 

P(c~, /x; t) = /z0/ + /./,0/2, for 0/ _> 0 

_ /~0/ 

1 - -  0/ 
for 0/ < 0. (6) 

5. 4. The MPF scheme and DDP 

In what follows it is assumed, for notational simplicity and clarity, that only one SVIC 
is active. However, the rationale extends to the case of multiple constraints. 

The DDP algorithm is readily modified to accommodate the SVIC problem by incor- 
poration the MPF given by equation (6). The augmented cost integrand becomes either: 

1. C o n s t r a i n t  a c t i v e ,  that is, g(x) >_ 0 

P(0/, /z; t) = /~0/ + /~0/2, 

L* = L + txg + txwg 2 

(note the similarity of the last term to the exterior quadratic penalty form); or 
2. Constraint inactive, that is, g(x) < 0 

e ( 0 / ,  ~ ;  t) ~-- ~0/(1 - 0 / ) -1 ,  

L* = L + /zg(1 - wg) -1. 
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These modifications result in an augmented Hamiltonian 

H* = H + 1/wP(ot, #; t) 

= H + A#g(1 + wg) + B~g(1 - wg) -1, 

w h e r e g  = g(x) a n d A  = 1, B = 0 f o r g  _ 0 o r A  = 0, B = 1 f o r g  < 0. 
Successive iterations o f  the DDP algorithm using H* in place of  H will, under convex- 

ity assumptions already noted, converge to a solution of  the relaxed problem given by 
equation (5) for current values of  #(t) and w. 

As in the case for the EQPF method, the only modifications required in the backward 
integration phase of  the DDP algorithm are changes to the partial derivatives of  the Hamil-  
tonian. These partial derivatives become 

H* = H x + A#(gx + 2Wggx) + Btzgx(1 - wg) -2, 

H *  = Hx~ + A~(gx~ + 2w(ggxx + ~)) + B#(gxx - wggxx + 2wg2))(1 - wg) -3. 

The DDP algorithm is readily modified to update multipliers and penalty function weights 
between iterations as follows: 

/zi+l(t) = 0 e  (or, / / i ;  t)  = /zi(t)(1 + 2w/g), g _> 0, 
0o~ 

= /~i(t)(1 - wig) - z ,  g < O, 

and W/+1 : a.w/, a > 0 and a = 1 for a fixed weighting scheme. 

6. C o m p a r i s o n s  

The following "evergreen" problem, considered by many researchers including [2, 5, 9, 
18-20], is chosen as a convenient basis for comparing select algorithms. The problem is 
to minimize 

V(xo, to) = s dt 

subject to 

-~1 = x2 ; x l (O)  = 0 ; x l ( 1 )  = 0 

x2 = u ; x2 (O)=  1 ; x 2 ( 1 ) = - 1  

g(xl) = xl  - p <- O, p > 0 

where in comparisons both p = 0.15 and p = 1/9 are considered. 



182 DAVID RUXTON 

6.1 .  C a s e  1: p = 1/9 

Results of applying the DDP/EQPF, DDP/MPF and Martensson's DDP algorithm variants 

to the problem with p = 1/9 are presented in table 1. 
When interpreting these results, the following points should be noted: 

�9 The mnemonics pf, m, and mts refer to the EQPF, MPF, and Martenson's DDP algorithm 

variants, respectively; 

�9 The optimal cost with p = 1/9 is known to be 8.0000 [19]; 
�9 In this case constraint boundary adhesion for x l ( t )  and u(t)  can only be estimated 

qualitatively and relative to the solution presented by Martensson, where he makes the 
point that the EQPF method yields relatively soft adhesion even for high values of the 
weighting parameter. Because Martensson does not publish full trajectory details, the 

measure of constraint boundary adhesion used is Axl, which gives the maximum devia- 

tion of the x l ( t )  trajectory from the optimal solution; 
�9 Martensson's algorithm variant involves significantly more computational effort than the 

others because it involves transforming the constraint from SVIC to another form using 
a hyperplane conversion technique and then the application of a DDP algorithm variant 

with substantially extended internal structure. 

6.2 .  C a s e  2 :  p = 0.15 

Results of applying the DDP/EQPF, DDP/MPF algorithm variants and the gradient- 

restoration algorithm to the problem with p = 0.15 are presented in tables 2 and 3. 

Table 1. Summary of results with p = 1/9. 

Method Cost Its. m a x  Z~X 1 W a /z CB adhesion 

pf 7.9932 24 0.0002 107 - - Soft 
m 7.9996 22 0.00004 90 5 50 Hard 
mts 8.0008 18 0.00003 - - - Hard 

Table 2. State and control trajectories with p = 0.15. 

t x~ r X~ f~rn u gr u py ulm6 ~8  x~l "t u~ 

0.4 0 . 1 4 9 6  0 . 1 4 9 8  -0.4730 -0.4954 -0.4982 - 0 .4961  0 . 1 4 9 8  -0.4938 
0.5 0 . 1 4 9 9  0 . 1 5 0 0  + 0 . 0 3 7 5  -0.0514 -0.0416 -0.0206 0 . 1 5 0 0  0.0000 
0.6 0 . 1 4 9 7  0 . 1 4 9 8  -0.4405 -0.4938 - 0 . 4 9 2 3  -0.4940 0 . 1 4 9 8  -0.4938 

Table 3. Summary of results with p = 0.15. 

Method Cost Its. E(u) w a Ix 

gr 5.927 16 0.019 - - 
pf 5.925 13 0.007 104 to 106 - - 

m16 5.926 16 0.006 100 5 50 
rnls 5.926 18 0.004 100 5 50 
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When interpreting these results, the following points should be noted: 

�9 Gradient-restoration (gr) results are as published by Miele [18]; 
�9 The optimal cost with p = 0.15 is known to be 5.926 [19]; 
�9 Results for the MPF scheme are given for both 16 and 18 iterations; 
�9 Note especially that u gr > 0 at t = 0.5, whereas u m and u ~ < 0 V t E [0, 1]; 
�9 Constraint satisfaction by either state or control trajectories may be measured by 

E(p)  = 

n 

~_j I ( P a - P r  I 
i=1 

n 

where Pa is the actual optimal value of the trajectory and Pc is the computed value of 
the trajectory, measured for the n discrete time steps used over the entire interval [0, 
1]. Here E(u) is considered, rather than the more natural E(xl), for convenience in 
matching and presenting results from the various methods. 

�9 The gradient-restoration algorithm involves transformation of the original problem into 
one of higher dimension. Although the first-order gradient-restoration algorithm is com- 
putationally more efficient, being of O(n2), than the second-order DDP algorithm, at 
O(n3), it has more work to do for a given problem, since the state-space dimension n 
increases according to the number of inequality constraints present. Thus, at least for 
problems of low dimension, the two algorithms have similar work to do per iteration. 

7.  C o n c l u s i o n s  

The results for the single problem considered here are indicative of those obtained by Ruxton 
[20, 21], where the DDP/MPF algorithm variant is tested on a number of nonlinear prob- 
lems and a problem involving an SVIC that is nonlinear and time dependent. 

It would seem that both the DDP/MPF and DDP/EQPF algorithm variants give more 
accurate results, and especially better constraint boundary adhesion, than the gradient- 
restoration algorithm, albeit for increased computational effort. Furthermore, the DDP/MPF 
algorithm appears to produce significantly better constraint boundary adhesion than the 
DDP/EQPF algorithm. This is to be expected given the modus operandi of the two schemes. 
For example, it is a simple matter to show that the Hamiltonian is continuous across the 
constraint boundary g(xl) = 0 for the DDP/MPF formulation, whereas for the DDP/EQPF 
formulation this is not the case. 

To date, algorithm variants based on Martensson's work have been the most effective 
means of dealing with SVIC problems when using the DDP method. The results presented 
here demonstrate that the DDP/MPF algorithm is easier to implement and is as accurate 
as Martensson's DDP algorithm. 
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The DDP method has useful and largely unrecognized potential when combined with 
penalty function schemes. Avenues for further research include 

�9 Investigating the effectiveness of different forms of the MPF given by equation (6); 
�9 Adapting the DDP/MPF variant for more demanding practical problems, especially those 

with highly nonlinear dynamics and possibly those involving singular arcs. 
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